

GEMX[™]: A Platform for Advanced High-Nickel Cathode Active Materials **Product Overview**

June 2020

CAMX Power 35 Hartwell Avenue Lexington, MA 02421-3102

www.camxpower.com

© 2020 CAMX Power LLC

- ➤ CAMX Power ("CAMX") based in Lexington, MA has invented GEMXTM, a class of cathode materials which enables high-performance, high-nickel, low-cobalt materials for Li-ion batteries.
 - ➤ CAMX-invented GEMXTM cathode platform is based on the engineering of grain boundaries of cathode particles to help overcome the issues associated with high-nickel, low-cobalt cathode materials.
 - Published peer-reviewed articles have characterized and confirmed many benefits of enrichment of the grain boundaries of high-nickel cathode materials, with demonstrated application in leading cathode chemistries such as NMC, NCA, and LNO.
- ➤ The GEMXTM cathode platform is protected by granted patents worldwide, including USA, Europe, China, Japan and Korea, and are valid beyond 2030.
- ➤ Samsung and Johnson Matthey have licensed GEMXTM.
- > Li-ion cells with GEMXTM cathode platform are available on the market today.

High-Nickel Cathode Materials will Enable the EV revolution

- In 2020, ~2 MM electric vehicles (EVs) will be sold worldwide. This will grow to ~10 MM EVs in 2025 and ~25 MM in 2030. (Bloomberg New Energy Finance)
- These EVs will be powered by Li-ion cells with high-nickel, low-cobalt cathodes.
- ~1 MM tons of cathode will be required in 2025 and ~2.5 MM tons in 2030, for a cathode material market size of ~\$25 B and ~\$65 B in 2025 and 2030, respectively.
- Today the cathode material cost assumes ~30% of the total cell cost and largely determines the overall performance of the cell.
- Cells with conventional high-nickel cathode materials suffer from premature performance decline that can be traced to degradation of the grain boundary region of these materials.

GEMX[™] Cathode Platform Benefits

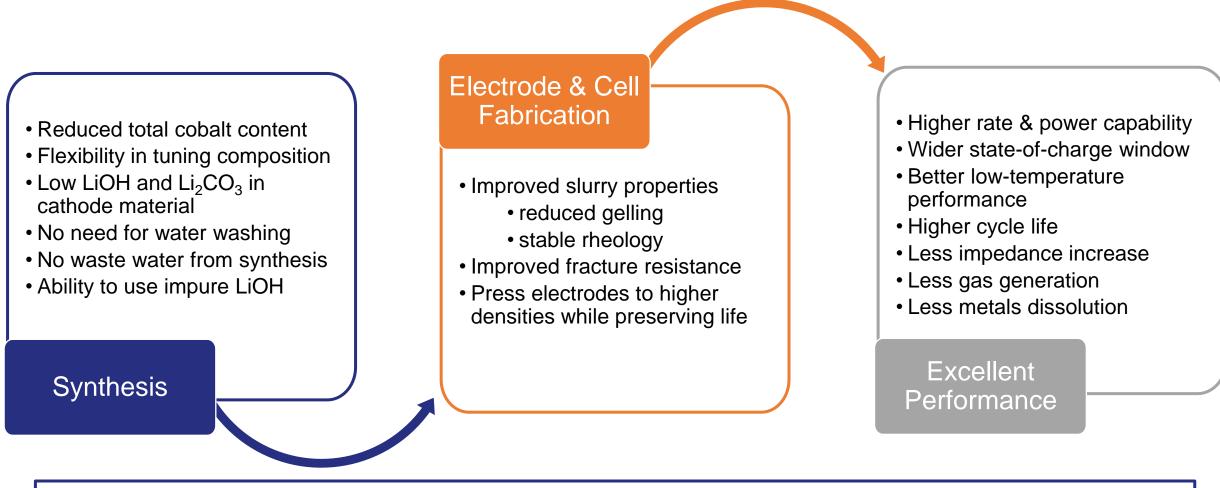
Reduced Total Cobalt

Higher Power

GEMX[™] overcomes the issues associated with highnickel cathode materials and offers unique benefits **Higher Energy**

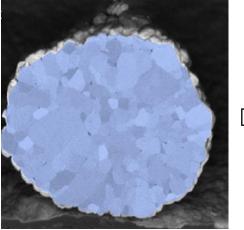
Better Extreme Temperature Performance

Longer Cycle Life

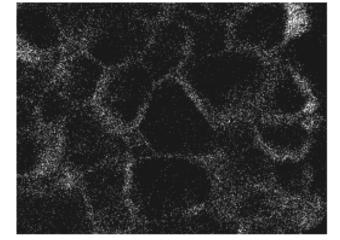

Lower Impedance Growth

Flexible Synthesis with Minimal Processing Steps

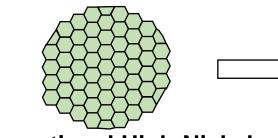
Improved Electrode & Cell Fabrication Properties



GEMX[™] cathode platform simultaneously benefits synthesis, electrode & cell fabrication, and performance


GEMX[™] Engineers the Grain Boundaries of High-Nickel, Low-Cobalt Materials

Uncycled High-Nickel Cathode Material (conventional)



SEM micrograph*

Uncycled Grain Boundary-Enriched High-Nickel Cathode Material (GEMX[™])

STEM with EDS map of cobalt

Conventional High-Nickel

- High-nickel cathode powders are composed of dense agglomerates of smaller particles, allowing for both high tap-density and low impedance.
- However, exposure of internal surface upon cycling accelerates degradation and performance decline.
- GEMX[™] grain boundary cobalt enrichment is a fundamental enhancement of cathode active materials in Li-Ion batteries.
- GEMX[™] enriches the cobalt in the regions within the particle where it is needed the most, thereby enabling reduction elsewhere in the particle.

NCA, NCM, and LNO are Enhanced by GEMX[™] Cathode Platform: gNCA[™], gNCM[™], gLNO[™]

LiNi _b Co _c Al _d O ₂ (NCA)	LiNi _b Co _c Mn _e O ₂ (NCM)	LiMg _a Ni _b Co _c Q _f O ₂
Core is stabilized by Co and Al	 Core is stabilized by Co and Mn 	 Core is stabilized by Mg and Co

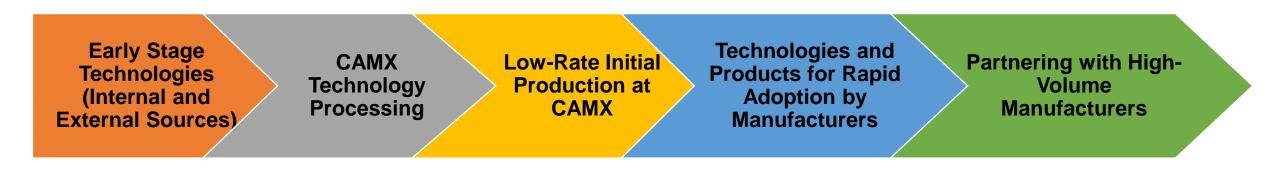
Further stabilized by enrichment of the grain boundaries with cobalt (and other elements)

GEMX™

gNCA™	gNMC™	gLNO™
➢ gNCA [™] demonstrates similar	> gNMC [™] with 10 mol % Co	➢ gLNO [™] has best combination of
performance as conventional	exhibits superior performance	capacity and life
NCA (15 mol % Co) but with	compared to commercial	
significantly less Co	NMC(811)	

Several Papers From the Recent Published Literature Characterize in Detail and Confirm the Benefits of Grain Boundary Enrichment

- A New Coating Method for Alleviating Surface Degradation of LiNi_{0.6}Co_{0.2}Mn_{0.2}O₂ Cathode Material: Nanoscale Surface Treatment of Primary Particles, Hyejung Kim, Min Gyu Kim, Hu Young Jeong, Haisol Nam, and Jaephil Cho. Nano Lett. 2015, 15, 2111–2119.
- High-Performance and Industrially Feasible Ni-Rich Layered Cathode Materials by Integrating Coherent Interphase. Kyoungmin Min, Changhoon Jung, Dong-Su Ko, Kihong Kim, Jaeduck Jang, Kwangjin Park, and Eunseog Cho. ACS Appl. Mater. Interfaces 2018, 10, 20599–20610.
- 3. Enhancing Interfacial Bonding between Anisotropically Oriented Grains Using a Glue-Nanofiller for Advanced Li-Ion Battery Cathode, Hyejung Kim, Sanghan Lee, Hyeon Cho, Junhyeok Kim, Jieun Lee, Suhyeon Park, Se Hun Joo, Su Hwan Kim, Yoon-Gyo Cho, Hyun-Kon Song, Sang Kyu Kwak, and Jaephil Cho. Adv. Mater. 2016, 28, 4705–4712.
- 4. A Highly Stabilized Nickel-rich Cathode Material by Nanoscale Epitaxy Control for High-energy Lithium-ion Batteries, Junhyeok Kim, Hyunsoo Ma, Hyungyeon Cha, Hyomyung Lee, Jaekyung Sung, Minho Seo, Pilgun Oh, Minjoon Park and Jaephil Cho. Energy & Env. Sci. 2018, 11, 1449–1459
- Residual Li Reactive Coating with Co₃O₄ for Superior Electrochemical Properties of LiNi_{0.91}Co_{0.06}Mn_{0.03}O₂ Cathode Material, Kyoungmin Min, Kwangjin Park, Seong Yong Park, Seung-Woo Seo, Byungjin Choi, and Eunseog Cho, Journal of The Electrochemical Society 2018, 165 (2) A79-A85.



The GEMX[™] Cathode Platform in the Market

- Recently Samsung ACQUIRED a global non-exclusive license to the GEMX[™] cathode platform.
- Samsung is already selling cells with GEMX[™] equivalent cathode material in the US and internationally.
- Samsung and a Korean partner are adding a 150,000 ton capacity to an existing 30,000 ton plant in South Korea to be completed by 2023.
- CAMX believes a significant fraction of this capacity will be dedicated to gNCA[™] and gNMC[™] equivalent cathode materials.
- Previous licensees of GEMX[™] include Johnson Matthey and of CAMX's earlier cathode platform CAM-7[®], BASF and Johnson Matthey.

The Success of GEMX[™] in the Marketplace with Major Manufacturers is a Validation of CAMX's Business Model

- De-Risked
- Scaled-up
- IP-Protected

- Accelerated Growth
- Shortened Time to Market & Profitability
- Lower Risk & Cost
- CAMX Staff Engageable for Interactive Technology Transfer

